A simplified version of this simulator is now offered. This is based on our standard, spectrally close-matched simulators, but uses LED boost zones in place of the traditional arc and tungsten lamps, up to 1100nm. These are much more compact than our simulator zones, are extremely stable and perform well within the international standards for spatial uniformity of +/-2%.
The basic technique, assuming that illumination levels above and below AM0 are required, is to reduce the overall level of illumination of the simulator so as to be, say, 10% below AM0, but maintaining the AM0 spectral distribution (Figure 1). |
Selected LED's are then used to provide the correct illumination for each junction at AM0 (Figure 2). By varying the output of these LED's, the current in any selected junction may be increased or decreased as required. In this way, any junction may be investigated independently of any other junction. Please note that alternative LED wavelengths to the ones demonstrated here are available. |
control of an individual LED as well as groups of LED's with the same wavelength. LED output configurations of the simulator can be saved and recalled.
The software automatically detects the LED units installed at start-up which allows the user to replace individual LED's or even install an alternative wavelength LED with minimal disruption to the control system. Thus any later changes to simulator wavelength requirements can be accommodated with minimal cost and downtime.
Please feel free to contact us for more information and pricing.

TS Space Systems - New Solar Simulator 2015 |